Management 3
Quantitative Methods

The Time Value of Money
Part 1B
The Basic Relationship

The earning power of a dollar in-hand today is:

\[FV = PV \times (1+r)^t \]

where there are two $dollar values:

1. **FV** = future value in $dollars
2. **PV** = present value, $ dollars in-hand today

Which are connected by:

- Time “t” and
- A rate-of-interest “r”.
Derive “r” and “t” from the basic equation

\[r = \left[\frac{FV}{PV} \right]^{1/t} - 1 \tag{3} \]

and

\[t = \ln \left(\frac{FV}{PV} \right) / \ln(1+r) \tag{4} \]
\[r = \left[\frac{FV}{PV} \right]^{1/t} - 1 \]
FV/ PV

This is Total Return.

Start w/ $100. Invest it.

Get $150 in 3 years = \(\frac{150}{100} = 1.5x \)

We have a multiple of 1.5x our starting value:

$100 of initial investment plus 50% return on Investment (“ROI”).
Return on Investment “ROI”

Total Return minus 1.

\[(FV/ PV) -1 = 1.5 - 1.0 = 0.5 = 50\%\]

This was achieved over 3 years.

How to compare it to other Returns.

Annualize it.

Break it down to its annual ROI.
\[r = \left[\frac{FV}{PV} \right]^{1/t} - 1 \]

We need to scale the 3 years to 1 year.

\[r = 1.5^{1/3} - 1 \]

\[r = 0.1447 = 14.47\% \text{ per year} \]

Check it
\[r = 1.5^{1/3} - 1 \]
\[r = 0.1447 = 14.47\% \text{ per year} \]

\[\$100.00 \times (1+0.1447) = \$114.47 \]
\[\$114.47 \times (1+0.1447) = \$131.03 \]
\[\$131.03 \times (1+0.1447) = \$149.99 \]

\[= \]

\[\$100.00 \times (1.1447)^3 = \$150.00. \]
\[r = \left(\frac{FV}{PV} \right)^{1/t} - 1 \]

If we know the two dollar values, Future and Present, and the time that connects them, then this formula gives us the “rate” that we earned if we started with PV and ended with FV after “t” years.
What annual interest rate will double money in: 8 years

use

\[r = \left[\frac{FV}{PV} \right]^{1/t} - 1 \]

\[= 2^{(0.125)} - 1 \]

\[= 9.05 \text{ percent} \]
\[r = \left[\frac{FV}{PV} \right]^{1/t} - 1 \]

Calculate the rate that doubles your money in 12 years.

\[r = \left[\frac{2}{1} \right]^{1/12} - 1 \]
\[r = [2]^{0.0833} - 1 \]
\[r = \]
What about non-uniform annual Returns?

Invest

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$100</td>
<td>$110</td>
<td>$120</td>
<td>$130</td>
</tr>
<tr>
<td>Annual Return</td>
<td>10.0%</td>
<td>9.1%</td>
<td>8.3%</td>
<td></td>
</tr>
</tbody>
</table>

What is the average annual return year-by-year? It is

\[9.13\% = \left[\frac{130}{100} \right]^{1/3} - 1 = \]

\[= \left[(1+r_1) \times (1+r_2) \times (1+r_3) \right]^{1/3} - 1 \]

\[= \left[(1.10) \times (1.091) \times (1.083) \right]^{1/3} - 1 \]
What about non-uniform annual Returns?

Invest $100

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$100</td>
<td>$50</td>
<td>$100</td>
</tr>
<tr>
<td>Annual Return</td>
<td>-50%</td>
<td>+100%</td>
<td></td>
</tr>
</tbody>
</table>

What is the average annual return year-by-year?
It is \((-0.50 + 1.0)/2 = 0.50/2 = 0.25 = 25\%\)
But this is not true! The ROI is zero.
What about non-uniform annual Returns?

\[= \left[(1+r_1)x(1+r_2) \right]^{1/2} - 1\]

\[= \left[(1-0.50)x(1+1.0) \right]^{1/2} - 1\]

\[= \left[0.50x(2.0) \right]^{1/2} - 1\]

\[(1.0)^{1/2} - 1 = 1 - 1 = 0\]
\[t = \frac{\ln \left(\frac{FV}{PV} \right)}{\ln (1+r)} \]

If we know the PV and the FV and the "rate" applied to the PV each year, the this formula tells us what "\(t \)" in years connected all of this.
Solving for “t”

How long will it take to double your money at an interest rate of: 9 percent

t = ln (FV/PV) / ln(1+r)

t = ln (2/1) / ln(1+0.09)

t = ln (2) / ln (1.09)

= 0.6931 / 0.0861

= 8.04 years
Analyzing Single Amounts

• **Determine FV** given you have a PV, time, and a rate.

• **Determine PV** given a promised FV, time, and a rate.

• **Determine return** “r” for a certain ending FV, starting PV, and duration “t” between the two.

• **Determine time** “t” it will take to earn a return “r”, on a certain ending FV and starting PV.
The four derivations from FV

[1] \[\text{FV} = \text{PV} \times (1+r)^t \] where \((1+r)^t\) is a FVF

[2] \[\text{PV} = \text{FV} \times \frac{1}{(1+r)^t} \] where \(\frac{1}{(1+r)^t}\) is a PVF

[3] \[r = \left[\frac{\text{FV}}{\text{PV}} \right]^{1/t} - 1 \]

[4] \[t = \ln \left(\frac{\text{FV}}{\text{PV}} \right) / \ln(1+r) \]
Returns on Investment – what’s the “r”?

• Invest $100 and receive $175 three years from now.

1. What is your return?
2. What is your “annualized” return?
 – Return = (FV/PV) - 1 = (175/100) - 1 = 1.75 - 1 = 75%
 – Annualized Return
 = (FV/PV)^(1/t) - 1
 = (175/100)^(1/3) - 1
 = 1.75 ^(0.33) - 1 = 1.205 - 1 = 20.5%
Check the Calculation

- Starting with $100, check the 20% return:
 - $100.00 \times (1.20) = $120.00 \text{ in one year}
 - $120.00 \times (1.20) = $144.00 \text{ in two years}
 - $144.00 \times (1.20) = $172.80 \text{ in three years}

Confirming the “r” is about 20 percent